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Abstract: Arabidopsis thaliana mitogen-activated protein kinase (MPK or MAPK) signaling network plays 

significant roles in various cellular processes. The three-dimensional structure of mitogen-activated 

protein kinase kinase 2 (MKK2), an upstream kinase in the MAP kinase cascade, was predicted using 
AlphaFold 2, and protein-protein docking simulations were performed between MPK6 and MKK2. The 

docking analysis identified important residues mediating their interaction. This structural prediction and 

protein docking analysis provide a further understanding at protein structure level.  
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Introduction 

 

A mitogen-activated protein kinase cascade consists of three main tiers of protein 

kinases: MPK kinase kinases (MAPKKKs), MPK kinases (MKKs), and MPKs, which are 

activated through sequential phosphorylation events in response to various extracellular and 

intracellular signals [LEE & al. 2008; POPESCU & al. 2009]. In Arabidopsis thaliana, there are 

60 MAPKKKs, 10 MKKs and 20 MPKs, thus leaving a multitude of possibilities to form 

cascades, even when bearing in mind that not all combinations occur [XING & FOROUD, 

2021]. Recent advances in protein structure prediction, particularly with the emergence of 

AlphaFold 2, have revolutionized the field of computational biology and protein research. 

AlphaFold 2, a deep learning-based approach, has demonstrated remarkable success in accurately 

predicting protein structures [PAKHRIN & al. 2021]. The accuracy of AlphaFold 2 has been 

reported to be close to that of experimental determination techniques, signifying a significant leap 

in the reliability of predicted protein structures [WANG & al. 2022]. AlphaFold 3 is a major advance 

over AlphaFold 2 and it broadens the scope from protein-only structures to multi-molecule 

complexes [ABRAMSON & al. 2024]. Ever since its publication, AlphaFold 2 began to pave 

the way for the convergence of structural bioinformatics and artificial intelligence, with ongoing 

efforts to establish standardized models for protein structure prediction [SZELOGOWSKI, 2023].  

AlphaFold 2 is a highly accurate deep learning algorithm developed to predict the 

three-dimensional (3D) structure of proteins from their amino acid sequences [JUMPER & al. 

2021; MA & al. 2022). This algorithm has demonstrated remarkable accuracy in predicting 

protein structures, as evidenced by its success in the 14th Community Wide Experiment on the 

Critical Assessment of Techniques for Protein Structure Prediction (CASP14) [TAKEI & 

ISHIDA, 2022]. The success of AlphaFold 2 in predicting the 3D structures of single protein 
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chains has raised questions about its future role in the field of protein structure prediction 

[KWON & al. 2021]. One of the key advantages of AlphaFold 2 is its ability to predict the 3D 

structures of proteins even when their native structures are unknown. This is achieved through 

the use of structure-based prediction methods, such as homology modeling or the application of 

its deep learning capabilities [PAK & IVANKOV, 2022]. The neural network-based method of 

AlphaFold 2 has allowed for the prediction of 3D structures for a significant portion of the 

human proteome, making these predicted structures publicly available [ZWECKSTETTER, 

2021]. In our study here, we used the amino acid sequence of Arabidopsis thaliana MKK2 as a 

query in ColabFold, an extension of AlphaFold 2, to generate the top five ranked structural 

models. 

The MKK2-MPK6 interaction plays an important role in plant responses to cold and 

salt stress signaling TEIGE & al. (2004). In this study, we also explored the molecular basis of 

this interaction through in silico docking analysis using HADDOCK. This software enables us 

to model the protein-protein interface between MKK2 and MPK6, providing insight into how 

specific residues mediate their interaction. By understanding these molecular contacts, we aim 

to shed light on the structural underpinnings of the MKK2-MPK6 signaling mechanism. 
 

Material and methods 

 

MKK2 structure prediction and visualization by ColabFold 

ColabFold is an extension of AlphaFold 3 that focuses on predicting protein 

complexes, offering both accuracy and speed in its predictions [CHANG & al. 2024]. By 

combining fast homology search with AlphaFold 2 and RoseTTAFold, ColabFold can 

efficiently predict large protein complexes [JUSSUPOW & KAILA, 2023]. This 

implementation significantly reduces computation time, making it possible to predict protein-

peptide complexes within a few minutes, depending on the size of the system [CHANG & al. 

2024]. There have been various applications of ColabFold such as modeling protein structures 

and predicting changes in protein structure associated with genetic effects on traits and disorders 

[EINSON & al. 2022; HARIO & al. 2024]. Additionally, ColabFold has been used to build 

complexes with specific peptides, demonstrating its versatility in various protein modeling tasks 

[SALIMINASAB & al. 2023; ZLOBIN & al. 2023]. 
In this study, we used the amino acid sequence of Arabidopsis thaliana MKK2 as a 

query in ColabFold, an extension of AlphaFold 2, to generate the top five ranked structural 

models. The top four models were subsequently selected for further analysis. For the 

identification of domains and functional sites, we used ScanProSite (https://prosite.expasy.org/ 

scanprosite) and InterProScan (https://www.ebi.ac.uk/interpro/about/interproscan). We used 

ChimeraX for the visualization and analysis of the protein models [PETTERSEN & al. 2021]. 

Additionally, Root Mean Square Deviation (RMSD) values were calculated between different 

models to assess their structural divergence. 

 

MPK6 structure retrieval from Protein Data Bank 

The experimental 3D structure of MPK6 was originally determined through x-ray 

diffraction as reported by PUTARJUNAN & al. (2019) and was also retrieved from Protein 

Data Bank (PDB, https://www.rcsb.org).  
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MKK2-MPK6 docking analysis with HADDOCK 
HADDOCK (High Ambiguity Driven protein-protein DOCKing) is a computational 

tool widely used for modeling protein-protein interactions. It specializes in utilizing 
experimental data such as NMR, mutagenesis, or bioinformatics predictions to drive the docking 
process by integrating biochemical and biophysical information. The strength of HADDOCK 
lies in its ability to handle ambiguous interaction restraints, allowing it to predict complexes 
with high accuracy even when precise details of the interaction are unknown [DOMINGUEZ & 
al. 2003]. This makes it particularly useful in the study of complex biological mechanisms and 
the design of therapeutic molecules. 
 

Visualization and analysis 
For visualization and analysis of the docking simulations, PyMOL (https://www. 

pymol.org) was used to examine the interaction interfaces This included a detailed investigation 
of bond types and interacting residues across each of the four simulations conducted. 
 

Results and discussions 
 

AlphaFold 2 was accessed through the ColabFold interface, where the amino acid 
sequence of MKK2 was inputted. This resulted in five top-ranking models, with the top four 
selected for further analysis. Various visualizations of these models are presented in Figure 1. 
The analysis of the structural models revealed significant variations among the top four MKK2 
models as indicated by Root Mean Square Deviation (RMSD) values. The RMSD between the 
first and second models was 6.470 Å, between the first and third models was 5.264 Å, and 
between the first and fourth models was 5.699 Å. Comparatively, the RMSD values between 
the second and third models, and between the second and fourth models were higher, at 8.112 
Å and 7.624 Å, respectively, while the smallest deviation was observed between the third and 
fourth models at 3.565 Å. In regard to the structural variance among the MKK2 models, the 
RMSD values suggest that although there is a notable consistency between some models, 
significant disparities exist, especially between models two and three.  

 

 
 
Figure 1. (A) Top-ranked MKK2 model colour-coded by predicted Local Distance Difference Test 

(plDDT) scores. (B) Superimposed structures of the MKK2 models, ranks 1-4. (C) Top-ranked MKK2 

model with key functional sites labeled, identified using ScanProSite and InterProScan. 

 
Functional site analysis predicted the presence of a protein kinase domain spanning 

residues 70 to 330, an ATP binding site across residues 76 to 99, and an active site between 
residues 188 to 200. These predictions highlight the critical regions potentially involved in the 
catalytic function and substrate interactions of the kinase. The analysis also reinforces the 
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importance of specific residues in kinase activity and ATP binding, crucial for the functional 
integrity for the protein. These structural insights are foundational for subsequent analysis on 
where these four models are docked with MPK6. We then performed a docking study, which 
aimed to analyze the interaction dynamics and the molecular mechanisms underlying the 
MKK2-MPK6 signaling pathway. 

The outcomes of the docking simulations between MKK2 and MPK6 are shown in 
Figure 2, highlighting the specific residues involved from both proteins. The docking simulation 
results are summarized in Table 1.  

 

 
Figure 2. 3D Visualization of the MKK2-MPK6 interface for each MKK2 model being docked with MPK6, 

indicating the involved residues from both proteins. 

 

Table 1. Summary of MKK2-MPK6 docking simulation results 

 
 
 
 
 
 
 
 
 

Discussion 
 

In this study, we explored the protein structure of MKK2 and the molecular basis of 
MKK2-MPK6 interaction. In regard to the structural variance among the MKK2 models, the 
RMSD values suggest that although there is a notable consistency between some models, 
significant disparities exist, especially between models two and three. 

The functional site analysis reinforces the importance of specific residues in kinase 

activity and ATP binding, crucial for the functional integrity of proteins. These structural 

 Binding Energy Buried Surface Area Desolvation Energy 

#1 -475.02 3802.2 -7.71484 

#2 -338.541 3796.74 -7.85969 

#3 -445.666 3740.65 7.90779 

#4 -318.102 4005.41 -14.3504 
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insights are foundational for subsequent analysis on where these four models are docked with 

MPK6. This docking study should further illustrate the interaction dynamics and the molecular 

mechanisms underlying the MKK2-MPK6 signaling pathway. 

The MKK2-MPK6 docking analysis reveals the critical residues and binding interfaces 

involved in this essential signaling pathway. The interaction sites identified suggest that these 

proteins form a stable complex that likely ensures efficient and accurate signal transmission. 

This reinforces the hypothesis that MKK2-MPK6 binding is a significant step in the activation 

of downstream stress response genes. 

The structural insights gained from this analysis could be instrumental in developing 

strategies for improving plant resilience. Understanding the specific residues involved in the 

MKK2-MPK6 interaction can help in the design of targeted mutations or small molecules that 

could enhance or disrupt this complex. This could be particularly useful for engineering plants 

with increased resistance to harsh environmental conditions. 

Our current work has indicated the importance of integrating computational and 

experimental approaches in unraveling the complexities of biological systems. Despite the 

modeling approach, our docking analysis is limited by the static nature of in silico models. In 

vivo or in vitro studies are necessary to confirm the interaction dynamics and the role of specific 

residues identified in this study. Future research should focus on validating these findings 

through mutagenesis or protein interaction assays, as well as expanding the analysis to other 

related signaling pathways to uncover broader regulatory networks.  

 

Note: Our data are valid even when AlphaFold 3 [ABRAMSON & al. 2024] was introduced 

after the completion of our work due to improvement in specific areas of molecular interactions.  
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