ALLELOPATHIC POTENTIAL OF CAPSICUM ANNUUM L. AND CORIANDRUM SATIVUM L. ON GROWTH OF BEAN CROP

Muhammad Zafar IQBAL¹, Lubna AHMED¹, Muhammad SHAFIQ^{1*}

¹ Department of Botany, University of Karachi, Karachi – 75270, Pakistan ^{*} Corresponding author. E-mail: shafiqeco@yahoo.com

Abstract: Allelochemical are natural compounds which effects the growth of surrounding plants. The treatment of aqueous powder extracts of *Capsicum annuum* L. and *Coriandrum sativum* L. at 1% showed significant decreased in shoot, root and seedling height, leaves growth and biomass of mung bean (*Vigna radiata*). The inhibitory effect on growth performance was directly related with the increasing concentration of powder extracts of coriander. The seedlings of both legume bean were tested for the determination of toxicity and tolerance to red chilli and coriander powder extract treatment at 0, 1, 2, 3, 4 and 5%. The seedlings of mung bean and cowpea showed lowest percentage of tolerance indices to coriander and red chilli powder extract treatment at 5%. However, on comparison, the seedlings of cowpea showed more tolerance to coriander and red chili powder extract than mung bean.

Keywords: coriander, phytotoxicity, plant extracts, red chili, root growth, seedling growth, tolerance indices.

Introduction

The discharge of phytochemical substances from one plant species altered the growth performances of surrounding plants. Many studies have shown that the release of toxic substances by a plant decreased or promote growth growth of neighboring plants [CHOU & LEE, 1991; KIL & YUN, 1992; REINHARDT & al. 1993; ALLOLI & NARAYANREDDY, 2000; DAIZY & al. 2001; FERGUSON & RATHINASABPATHI, 2003; OUSSAMA, 2003; DONGRE & YADAV, 2005; MISHRA & al. 2014] and termed as allelopathy. The impact of leaf leachates of some woody plant species on agriculture and some desertt plants were reported [MELKANIA, 1984; HEGAZY & al. 1990; PURI & KHARA, 1991]. Seed regeneration failures of *Pinus silvestris* L. by *Empetrum hermaphroditum* Hagerup occurred due to allelopathic interference [ZACKRISSON & NILSSON, 1992].

Allelopathy helps in ecosystems management [ABBASSI & al. 2013] and some work in earlies 1970 was initiated in Pakistan [CHEEMA & al. 2013]. These chemicals products can serve for weed control [BAGHERI & al. 2013; BOJOVIĆ & JAKOVLJEVIĆ, 2015]. The release of allelopathic compounds influence positively and negatively on the growth of plants. *Capsicum annuum* L. belongs to Solanaceae family. *Coriandrum sativum* L. (Apiaceae) is popular medicinal plant and seeds are source of iron, copper, calcium, magnesium and zinc. Both spices production have great economic demands and used in cooking on daily basis in Pakistan and worldwide.

The purpose of the studies was to assess the toxic potential of red chili and coriander aqueous powders extract on the growth of two different bean crops namely, cowpea and mung bean because of economic importance of both leguminous crops are cultivating in the larger agricultural area of the Pakistan.

ALLELOPATHIC POTENTIAL OF CAPSICUM ANNUUM L. AND CORIANDRUM SATIVUM L. ON... Material and methods

The experimental site is located in the Department of Botany at the Karachi University Campus and seedling growth experiment was carried out in pots in green house. 1% solution of red chilli or coriander powder prepared by weighing one g of spice powder then dissolve in 99 ml of distilled water to make up the volume up to 100 ml and subsequent concentrations 1%, 2%, 3%, 4% and 5% were prepared respectively. The fruit of red chilli and seeds of coriander powder was kept in boiling so that convert into solution completely. The certified seeds of cowpea and mung bean were purchased from market and imbibed in water for an hour to break seed dormancy. The beans seeds surface was sterilized with 1N bleach solution for three minutes and rinsed by distilled water to remove any type of fungal contamination. The plastic pots were 7.3 cm in diameter and 9.6 cm in depth and were filled with ratio of one-part manure and three parts garden loam. Dig 1 cm holes of soil from above the surface of pots, at least 5 holes and buried the 2-2 seeds of one type of plant into pot. The pots were water daily and under the influence of sunlight, seeds were able to germinate uniformly in two weeks. One seedling was grown in each pot and ten ml of powder extract of Capsicum annuum L. and Coriandrum sativum L. were provided into the respective pots. The experiment was completely randomized. The pots were reshuffled weekly to avoid light, shade or any other climatic factors. There were five replicates of each treatment. The seedlings were uprooted from the pots after five weeks and washed with tap water. The root, shoot and seedling length and numbers of leaves were recorded. The removed seedlings were kept in oven at 80 °C for 24 hours for the determination of dry weight. Root, leaf, shoot and total plant fresh and dry weight were recorded. Root / shoot ratio, leaf weight, specific leaf area and leaf area ratio were determined according to REHMAN & IQBAL (2009).

The obtained data was statistically analyzed by ANOVA and DMRT (Duncan Multiple Range Test) (p < 0.05) using software packages SPSS version 14.0 on personal computer.

Results

The treatment of different concentrations of red chilli and coriander aqueous powder extract showed variable effects on growth performance of cowpea and mung bean (Table 1-4). Red chilli extract treatment at 4% significantly (p<0.05) decreased root, shoot, seedling height, leaf area and total fresh weight of cow pea. The significant decline in leaf weight ratio of cow pea was found at 3% red chilli extract treatment. The treatment of red chilli powder extract at 3% was brought a significant decrease in shoot growth, number of leaves and leaves dry weight of mung bean. The treatment of red chilli at all concentration showed nonsignificant effect on root, shoot dry weight and specific leaf area of cow pea, whereas, root fresh weight and root shoot ratio of mung bean. Shoot, root, seedling length, number of leaves and leaf size of cow pea was highly decreased at 5% coriander aqueous powder extract treatment. Coriander extract treatment at 1% treatment produced significantly lower number of leaves in mung bean. The coriander extract treatment at 5% significantly affected root, shoot and total plant dry weight of mung bean. Leaf weight ratio, of mung bean greatly affected by 5% of coriander powder extract treatment.

Muhammad	Zafar	IQBAL	& al.
----------	-------	-------	-------

Table 1. Growth of cowpea in various concentrations of red chilli powder extract. Seedling growth Treatments aqueous powder extract concentration (%)							
Seedling growth characteristic		reatments aq	ueous powde	r extract con	centration (%	-	
Shoot length (cm)	0 69.31 f ± 0.070	68.86 e ± 0.017	2 66.67 d ± 0.017	5 66.56 c ± 0.015	4 60.32 b ±0.006	5 60.00 a ±0.001	
Root length (cm)	12.75 f ± 0.020	12.05 e ± 0.020	10.80 d ± 0.011	9.87 c ± 0.004	9.50 b ±0.040	8.27 a ±0.016	
Seedling length (cm)	$\begin{array}{c} 82.05 \ f \\ \pm \ 0.054 \end{array}$	80.91 e ± 0.006	77.47 d ± 0.099	$\begin{array}{c} 76.43 \ c \\ \pm \ 0.018 \end{array}$	$\begin{array}{c} 69.82 \ b \\ \pm \ 0.044 \end{array}$	68.27 a ± 0.009	
Number of leaves	15.00 ae ± 0.00	13.66 d ± 0.710	12.33 c ± 0.062	12.00 bc ± 0.001	11.00 ab ± 0.010	10.33 a ± 0.023	
Leaf area (cm ²)	48.65 d ± 0.037	42.91 d ± 0.007	38.00 c ±0.408	35.33 b ±0.082	$\begin{array}{c} 35.58 \text{ b} \\ \pm 0.129 \end{array}$	30.85 a ± 0.042	
Root fresh weight (g)	$\begin{array}{c} 0.880 \ d \\ \pm \ 0.020 \end{array}$	$\begin{array}{c} 0.860 \text{ d} \\ \pm \ 0.006 \end{array}$	0.800 c ± 0.004	$\begin{array}{c} 0.640 \text{ b} \\ \pm 0.004 \end{array}$	$\begin{array}{c} 0.620 \text{ b} \\ \pm 0.018 \end{array}$	0.440 a ± 0.008	
Shoot fresh weight (g)	1.72 e ± 0.006	$1.42 \text{ d} \pm 0.006$	1.34 c ± 0.004	1.33 c ± 0.004	$\begin{array}{c} 1.02 \text{ b} \\ \pm 0.020 \end{array}$	0.850 a ± 0.012	
Leaves fresh weight (g)	1.15 d ± 0.009	$\begin{array}{c} 1.01 \\ \pm \ 0.230 \end{array}$	0.870 bc ± 0.006	0.640 ab ± 0.012	0.620 ab ± 0.005	0.440a ± 0.008	
Total plant fresh weight (g)	3.30 d ± 0.106	2.290 c ± 0.206	2.350 c ± 0.16	2.11 bc ± 0.012	1.890 ab ± 0.092	1.760 ab ± 0.082	
Root dry weight (g)	0.180 a ± 0.430	0.190 a ± 0.025	0.310 a ± 0.004	0.170 a ± 0.004	0.120 a ± 0.005	0.100 a ± 0.198	
Shoot dry weight (g)	0.850 e ± 0.012	0.720 d ± 0.004	0.660 c ± 0.013	0.680 c ± 0.017	$\begin{array}{c} 0.520 \text{ b} \\ \pm \ 0.004 \end{array}$	0.310 a ± 0.004	
Leaves dry weight (g)	0.280 a ± 0.008	0.260 a ± 0.006	0.250 a ± 0.011	0.240 a ± 0.008	0.185 a ± 0.005	0.100 a ± 0.220	
Total plant dry weight (g)	$\begin{array}{c} 2.180 \text{ b} \\ \pm 0.428 \end{array}$	2.020 ab ± 0.220	1.510 a ± 0.070	1.210 a ± 0.039	0.980 a ± 0.041	0.780 a ± 0.020	
Root / Shoot ratio	0.297 b ± 0.037	0246 a ± 0.032	0.350 a ± 0.002	0.310 a ± 0.036	0.316 ab ± 0.032	0.320 a ± 0.063	
Leaf weight ratio	0.450 ab ± 0.007	0.280 ab ± 0.015	0.220 a ± 0.004	0.230 a ± 0.006	$\begin{array}{c} 0.310 \text{ b} \\ \pm \ 0.011 \end{array}$	$\begin{array}{c} 0.340 \text{ b} \\ \pm \ 0.005 \end{array}$	
Specific leaf area (cm ² g ⁻¹)	23.260 a ± 0.004	38.930 a ± 0.122	43.270 a ± 0.148	53.190 a ± 0.169	37.540 a ± 0.104	47.160 a ± 0.242	
Leaf area ratio (cm ² g ⁻¹)	10.450 c ± 0.107	10.990 c ± 0.330	9.910 a ± 0.042	12.620 b ± 0.036	11.800 d ± 0.057	11.550 e ± 0.102	
Number followed by the same letters on the same column are not significantly different (p<0.05) according to Duncan's Multiple Range Test. Symbol used: $\pm =$ Standard error.							

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c cccc} 0.020 & \pm \\ 0.000 & 8. \\ 0.001 & \pm \\ .810 & 500 \\ 1.767 & \pm \\ .870 & ab & 7. \\ 0.462 & \pm \\ .300 & c & 188 \\ 0.091 & \pm \\ 210 & a & 0. \\ 0.006 & \pm \\ 210 & d & 1. \\ 0.013 & \pm \\ 690 & d & 0. \\ 0.004 & \pm \\ 110 & b & 1. \\ \end{array}$	$\begin{array}{c ccccc} 0.213 & \pm \\ 0.60 & d & 6 \\ 0.043 & \pm \\ .390 & b & 47 \\ 0.172 & \pm \\ 510 & 7 \\ 0.427 & \pm \\ 0.000 & 17 \\ 0.001 & \pm \\ 100 & a & 0 \\ 0.223 & \pm \\ 150 & c & 1 \\ 0.004 & \pm \\ 640 & c & 0 \\ 0.004 & \pm \\ 890 & b & 1 \\ \end{array}$	5 0.230 b 0.052 900 b 0.231 7.130 b 0.273 120 a 0.241 7.000 b 0.002 0.090 a 0.004 0.006 620 b 0.005 7.20ab 0.006
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c cccc} 0.020 & \pm \\ 0.000 & 8. \\ 0.001 & \pm \\ .810 & 500 \\ 1.767 & \pm \\ .870 & ab & 7. \\ 0.462 & \pm \\ .300 & c & 188 \\ 0.091 & \pm \\ 210 & a & 0. \\ 0.006 & \pm \\ 210 & d & 1. \\ 0.013 & \pm \\ 690 & d & 0. \\ 0.004 & \pm \\ 110 & b & 1. \\ \end{array}$	$\begin{array}{c ccccc} 0.213 & \pm \\ 0.60 & d & 6 \\ 0.043 & \pm \\ 1.390 & b & 47 \\ 0.172 & \pm \\ 510 & 7 \\ 0.427 & \pm \\ 0.000 & 17 \\ 0.001 & \pm \\ 100 & a & 0 \\ 0.223 & \pm \\ 150 & c & 1 \\ 0.004 & \pm \\ 640 & c & 0 \\ 0.004 & \pm \\ 890 & b & 1 \\ \end{array}$	=0.052 =0.052 =0.231 7.130 b =0.231 7.130 b =0.241 7.000 b =0.002 0.090 a =0.004 0.000 b =0.006 =0.005 .720ab
$\begin{array}{c cccc} 094 & \pm 0.2 \\ 40 \ b & 55.09 \\ 140 & \pm 0.0 \\ 00 \ a & 8.66 \\ 001 & \pm 0.2 \\ 000 \ a & 21.45 \\ 218 & \pm 0.1 \\ 00 \ a & 0.36 \\ 009 & \pm 0.0 \\ 00 \ a & 1.41 \\ 165 & \pm 0.0 \\ 00 \ b & 0.52 \\ 021 & \pm 0.0 \\ 00 \ a & 2.29 \\ 019 & \pm 0.0 \\ 00 \ a & 0.150 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c cccc} 0.001 & \pm \\ \hline 0.001 & \pm \\ \hline .810 \ b & 500 \\ \hline 1.767 & \pm \\ \hline .870 \ ab & 7. \\ 0.462 & \pm \\ \hline .300 \ c & 188 \\ \hline 0.091 & \pm \\ \hline 210 \ a & 0. \\ 0.006 & \pm \\ \hline 210 \ d & 1. \\ 0.013 & \pm \\ \hline 690 \ d & 0. \\ 0.004 & \pm \\ \hline 110 \ b & 1. \\ \end{array}$	$\begin{array}{c cccc} 0.043 & \pm \\ 0.043 & \pm \\ 0.172 & \pm \\ 0.172 & \pm \\ 510 & 7 \\ 0.427 & \pm \\ 0.000 & 17 \\ 0.001 & \pm \\ 100 & 0 \\ 0.223 & \pm \\ 150 & c & 1 \\ 0.004 & \pm \\ 640 & c & 0 \\ 0.004 & \pm \\ 890 & b & 1 \\ \end{array}$	=0.231 7.130 b 0.273 .120 a 0.241 7.000 b 0.002 0.090 a 0.004 0.0000 0.000 0.000 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.00000 0.00000 0.000000
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{ccccc} 0.071 & \pm 1 \\ 000 \ b & 7.8 \\ 0.002 & \pm \\ 450 \ d & 200 \\ .085 & \pm 0 \\ 330 \ a & 0. \\ 0.013 & \pm \\ 0.005 & \pm \\ 1.0005 & \pm \\ 1.0005 & \pm \\ 1.0002 & \pm \\ 1$	$\begin{array}{c ccccc} 1.767 & \pm \\ 370 \text{ ab} & 7.\\ 0.462 & \pm \\ .300 \text{ c} & 188 \\ 0.091 & \pm \\ 210 \text{ a} & 0.\\ 0.006 & \pm \\ 210 \text{ d} & 1.\\ 0.013 & \pm \\ 690 \text{ d} & 0.\\ 0.004 & \pm \\ 110 \text{ b} & 1. \end{array}$	$\begin{array}{c ccccc} 0.172 & \pm \\ 510 & & 7\\ 0.427 & \pm \\ 0.000 & & 17\\ 0.001 & \pm \\ 100 & a & 0\\ 0.223 & \pm \\ 150 & c & 1\\ 0.004 & \pm \\ 640 & c & 0\\ 0.004 & \pm \\ 890 & b & 1 \end{array}$	0.273 .120 a 0.241 7.000 b 0.002 0.090 a 0.090 a 0.004 .010 b 0.006 0.006 .620 b 0.005 .720ab
$\begin{array}{c ccccc} 001 & \pm 0.2 \\ \hline 00 \ a & 21.45 \\ \hline 218 & \pm 0.1 \\ 00 \ a & 0.36 \\ \hline 009 & \pm 0.0 \\ 0009 & \pm 0.0 \\ \hline 00 \ a & 1.41 \\ \hline 165 & \pm 0.0 \\ \hline 00 \ b & 0.52 \\ \hline 021 & \pm 0.0 \\ \hline 00 \ a & 2.29 \\ \hline 019 & \pm 0.0 \\ \hline 00 \ a & 0.150 \\ \hline \end{array}$	$\begin{array}{rrrr} 249 & \pm 0\\ \overline{50} e & 20.4\\ 114 & \pm 0.\\ 0 a & 0.2\\ 004 & \pm 0\\ 0 0 e & 1.4\\ 006 & \pm 0\\ 0 0 e & 0.7\\ 006 & \pm 0\\ 0 0 c & 2.3\\ 011 & \pm (0)\\ 0 b c & 0.1\\ \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c cccc} 0.462 & \pm \\ .300 \text{ c} & 188 \\ 0.091 & \pm \\ 210 \text{ a} & 0. \\ 0.006 & \pm \\ 210 \text{ d} & 1. \\ 0.013 & \pm \\ 690 \text{ d} & 0. \\ 0.004 & \pm \\ 110 \text{ b} & 1. \\ \end{array}$	$\begin{array}{cccc} 0.427 & \pm \\ 0.000 \ c & 17\\ 0.001 & \pm \\ 100 \ a & 0\\ 0.223 & \pm \\ 150 \ c & 1\\ 0.004 & \pm \\ 640 \ c & 0\\ 0.004 & \pm \\ 890 \ b & 1 \end{array}$: 0.241 7.000 b : 0.002 0.090 a : 0.004 0.010 b : 0.006 .620 b : 0.005 .720ab
$\begin{array}{cccc} 218 & \pm 0.1 \\ 00 a & 0.36 \\ 009 & \pm 0.0 \\ 00 a & 1.41 \\ 165 & \pm 0.0 \\ 00 b & 0.52 \\ 021 & \pm 0.0 \\ 00 a & 2.29 \\ 019 & \pm 0.0 \\ 00 a & 0.150 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c cccc} 0.091 & \pm \\ 210 a & 0.\\ 0.006 & \pm \\ 210 d & 1.\\ 0.013 & \pm \\ 690 d & 0.\\ 0.004 & \pm \\ 110 b & 1. \\ \end{array}$	$\begin{array}{c cccc} 0.001 & \pm \\ 100 & a & 0 \\ 0.223 & \pm \\ 150 & c & 1 \\ 0.004 & \pm \\ 640 & c & 0 \\ 0.004 & \pm \\ 890 & b & 1 \\ \end{array}$	0.002 0.090 a 0.004 0.004 0.006 0.006 0.005 0.005
$\begin{array}{cccc} 009 & \pm 0.0 \\ 00 a & 1.41 \\ 165 & \pm 0.0 \\ 00 b & 0.52 \\ 021 & \pm 0.0 \\ 00 a & 2.29 \\ 019 & \pm 0.0 \\ 00 a & 0.150 \end{array}$	$\begin{array}{c cccc} 004 & \pm 0 \\ \hline 0 & e & 1.4 \\ 006 & \pm 0 \\ \hline 0 & e & 0.7 \\ 006 & \pm 0 \\ \hline 0 & c & 2.3 \\ 011 & \pm 0 \\ \hline 0 & bc & 0.1 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccc} 0.006 & \pm \\ 210 \text{ d} & 1. \\ 0.013 & \pm \\ \hline 690 \text{ d} & 0. \\ 0.004 & \pm \\ 110 \text{ b} & 1. \\ \end{array}$	$\begin{array}{c cccc} 0.223 & \pm \\ 150 \ c & 1 \\ 0.004 & \pm \\ 640 \ c & 0 \\ 0.004 & \pm \\ 890 \ b & 1 \\ \end{array}$	0.004 0.010 b 0.006 0.006 0.005 0.005
$\begin{array}{c cccc} 165 & \pm 0.0 \\ 0 & b & 0.52 \\ 021 & \pm 0.0 \\ 0 & a & 2.29 \\ 019 & \pm 0.0 \\ 0 & a & 0.150 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} 0.005 & \pm \\ 220 a & 0.0\\ 0.002 & \pm \\ 550 b & 2.\\ 0.11 & \pm \\ \end{array}$	$\begin{array}{c cccc} 0.013 & \pm \\ \hline 690 \ d & 0. \\ 0.004 & \pm \\ \hline 110 \ b & 1. \\ \end{array}$	$\begin{array}{c ccc} 0.004 & \pm \\ 640 \text{ c} & 0 \\ 0.004 & \pm \\ 890 \text{ b} & 1. \end{array}$	0.006 .620 b 0.005 .720ab
$\begin{array}{c cccc} 021 & \pm 0.0 \\ 00 & 2.29 \\ 019 & \pm 0.0 \\ 0 & 0.150 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c cccc} 0.002 & \pm \\ 50 & b & 2. \\ 0.11 & \pm \end{array}$	0.004 ± 110 b 1.	0.004 ± 890 b 1.	0.005 .720ab
$\begin{array}{c} 019 \\ \pm 0.0 \\ 0 a \\ 0.150 \end{array}$	$\pm (11) \pm (11) $	0.11 ±			
± 0.0	<i>1</i> 04 ±0				.020 a 0.017
$\begin{array}{ccc} 00 a & 1.01 \\ 004 & \pm 0.0 \end{array}$.210 b
$\begin{array}{ccc} 30 \ a & 0.86 \\ 004 & \pm 0.0 \end{array}$.780 b 0.220
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.780 a : 0.020
					.192 a 0.006
					.705 b : 0.014
					0.900 c 0.176
50 a 10.61		540 h 16	770 c 18		.790 e : 0.154
	$\begin{array}{c cccc} 004 & \pm 0.0 \\ \hline 001 & \pm 0.0 \\ \hline 001 & \pm 0.0 \\ \hline 60 a & 24.90 \\ \hline 242 & \pm 0.0 \\ \hline 50 a & 10.61 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

ALLELOPATHIC POTENTIAL OF CAPSICUM ANNUUM L. AND CORIANDRUM SATIVUM L. ON...

Muhammad	Zafar	IQBAL	& al.
----------	-------	-------	-------

Table 3. Growth of cowpea in various concentrations of coriander powder extract. Seedling growth Treatments aqueous powder extract concentration (%)							
Seedling growth characteristic	0	reatments aq	ueous powde	r extract con	centration (%	o) 5	
Shoot length (cm)	69.30 f ± 0.040	65.87 d ± 0.067	64.56 c ± 0.157	68.92 e ± 0.195	62.18 b ±0.008	57.00 a ±0.278	
Root length (cm)	12.75 c ± 0.016	10.80 b ± 0.040	15.05 e ± 0.012	12.80 c ± 0.173	13.65 d ±0.167	8.60 a ±0.040	
Seedling length (cm)	82.05 f ± 0.022	76.67 c ± 0.154	79.61d ± 0.030	81.72 e ± 0.150	75.83 b ± 0.011	65.60 a ± 0.086	
Number of leaves	15.00 e ± 0.00	$\begin{array}{c} 10.30 \text{ b} \\ \pm \ 0.230 \end{array}$	$\begin{array}{c} 10.23 \text{ b} \\ \pm \ 0.020 \end{array}$	12.66 d ± 0.230	11.00 c ± 0.010	9.00 a ± 0.001	
Leaf area (cm ²)	48.65 d ± 0.037	40.38 c ± 0.033	46.00 d ±0.040	40.41 c ±0.004	$\begin{array}{c} 30.33 \text{ b} \\ \pm \ 0.008 \end{array}$	22.16 a ± 2.736	
Root fresh weight (g)	$\begin{array}{c} 0.88 \text{ b} \\ \pm 0.004 \end{array}$	0.930 c ± 0.004	0.820 a ± 0.004	$\begin{array}{c} 1.00 \text{ d} \\ \pm 0.002 \end{array}$	0.950 e ± 0.004	0.810 a ± 0.004	
Shoot fresh weight (g)	1.72 d ± 0.013	1.73 d ± 0.008	1.44 c ± 0.008	1.41 c ± 0.004	$\begin{array}{c} 1.28 \text{ b} \\ \pm 0.020 \end{array}$	1.140 a ± 0.008	
Leaves fresh weight (g)	1.15 d ± 0.009	0.970 ab ± 0.212	0.950 bc ± 0.008	0.850 ab ± 0.144	0.720 ab ± 0.004	0.610 a ± 0.008	
Total plant fresh weight (g)	3.30 c ± 0.115	3.39 bc ± 0.206	3.70 bc ± 0.122	3.30 bc ± 0.017	3.53 b ± 0.149	2.96 a ± 0.038	
Root dry weight (g)	0.220 a ± 0.400	0.210 a ± 0.004	0.300 a ± 0.005	0.240 a ± 0.008	0.200 a ± 0.004	0.180 a ± 0.010	
Shoot dry weight (g)	0.210 d ± 0.012	$\begin{array}{c} 0.130 \text{ b} \\ \pm \ 0.007 \end{array}$	$\begin{array}{c} 0.200 \ d \\ \pm \ 0.018 \end{array}$	0.150 a ± 0.015	0.130 c ± 0.008	0.160 a ± 0.004	
Root / Shoot ratio	0.180 a ± 0.005	0.230 c ± 0.001	0.220 bc ± 0.003	0.200 ab ± 0.009	0.300 d ± 0.010	$0.270 \text{ c} \\ \pm 0.008$	
Leaf weight ratio	0.850 d ± 0.004	0.880 d ± 0.004	0.740 c ± 0.005	$\begin{array}{c} 0.610 \ \text{b} \\ \pm \ 0.012 \end{array}$	0.800d d ± 0.034	0.590 a ± 0.007	
Specific leaf area (cm ² g ⁻¹)	0.280 d ± 0.002	$0.170 \text{ b} \\ \pm 0.002$	0.250 c ± 0.010	0.180 b ± 0.004	0.170 ab ± 0.002	0.170 a ± 0.004	
Leaf area ratio (cm ² g ⁻¹)	2.180 c ± 0.007	2.30 c ± 0.244	2.400 c ± 0.020	1.98 b ± 0.027	1.94 b ± 0.023	1.510 a ± 0.012	
Number followed by the same letters on the same column are not significantly different (p<0.05) according to Duncan's Multiple Range Test. Symbol used: $\pm =$ Standard error.							

Table 4. Growth of mung bean in various concentrations of coriander powder extract.

Seedling growth	Treatments aqueous powder extract concentration (%)						
characteristic	0	1	2	3	4	5	
Shoot length (cm)	48.21 e	45.31 b	45.42 c	46.13 d	46.22 d	40.23 a	
	± 0.008	± 0.004	± 0.029	± 0.010	±0.027	±0.016	
Root length (cm)	12.43 d	13.37 de	11.90 a	12.30 c	12.33 c	6.90 b	
	± 0.020	± 0.010	± 0.040	± 0.062	±0.009	±0.016	
Seedling length (cm)	60.64 e	56.68 d	57.32 b	58.43 c	58.55 c	47.13 a	
	± 0.014	± 0.014	± 0.056	± 0.057	± 0.030	± 0.029	
Number of leaves	10.00 b	8.35 a	9.00 b	10.12 b	9.66 b	7.22 b	
	± 0.00	± 0.781	± 0.00	± 0.409	± 0.034	± 0.001	
Leaf area (cm ²)	22.80 a	22.97 ab	23.80 b	25.00 c	22.90 a	17.00 c	
	± 0.080	± 0.040	±0.080	±0.062	± 0.022	± 0.81	

Root fresh weight (g)	0.390 a	0.650 b	0.980 d	0.610 b	0.780 c	0.090 b
	± 0.007	± 0.010	± 0.047	± 0.004	± 0.006	± 0.004
Shoot fresh weight (g)	1.630 c	1.650 c	1.770 d	1.720 e	1.540 b	1.010 a
	± 0.004	± 0.004	± 0.017	± 0.006	± 0.004	± 0.011
Leaves fresh weight (g)	1.280 f	1.090 d	1.090 d	0.950 a	1.210 e	0.620 c
	± 0.004	± 0.010	± 0.010	± 0.019	± 0.004	± 0.006
Total plant fresh weight (g)	3.30 b	3.390 c	3.700 e	3.300 b	3.530 d	1.720 a
	± 0.125	± 0.017	± 0.048	± 0.008	± 0.004	± 0.006
Root dry weight (g)	0.170 b	0.250 d	0.480 e	0.210 c	0.190 b	0.070 a
	± 0.005	± 0.004	± 0.008	± 0.004	± 0.004	± 0.008
Shoot dry weight (g)	1.030 b	1.250 d	1.370 f	1.300 e	1.140 c	0.910 a
	± 0.004	± 0.004	± 0.004	± 0.004	± 0.004	± 0.004
Leaves dry weight (g)	0.980 a	0.590 a	0.550 a	0.470 a	0.610 a	0.530 ab
	± 0.217	± 0.008	± 0.097	± 0.004	± 0.005	± 0.019
Total plant dry weight (g)	2.180 b	2.090 b	2.400 c	1.980 b	1.940 b	1.510 a
	± 0.210	± 0.010	± 0.012	± 0.010	± 0.008	± 0.021
Leaf weight ratio	0.450 e	0.280 c	0.220 c	0.230 b	0.310 d	0.340 d
	± 0.007	± 0.150	± 0.004	± 0.006	± 0.001	± 0.005
Specific leaf area (cm ² g ⁻¹)	23.260 a	38.390 c	43.270 d	53.190 f	37.540 b	47.160 e
	± 0.094	± 0.123	± 0.146	± 0.159	± 0.104	± 0.242
Leaf area ratio (cm ² g ⁻¹)	10.450 b	10.990 c	9.910 a	12.620 d	11.800 d	16.550 e
	± 0.107	± 0.033	± 0.042	± 0.036	± 0.067	± 0.103
Number followed by the same letters on the same column are not significantly different (p<0.05) according to Duncan's Multiple Range Test. Symbol used: $\pm =$ Standard error.						

ALLELOPATHIC POTENTIAL OF CAPSICUM ANNUUM L. AND CORIANDRUM SATIVUM L. ON...

The seedlings of cowpea were tested to the tolerance to different concentrations of red chilli and coriander powder extract. Red chili extract treatment at 1, 2, 3, 4 and 5% gradually decreased tolerance indices by 94.50, 84.70, 77.41, 74.50 and 65.79% in seedlings of cowpea. The treatment of coriander extract treatment at 5% showed the lowest tolerance (67.45%) indices. However, on comparison, the seedlings of cowpea showed more tolerance to coriander powder extract than red chili extract at 5%. Red chilli extract treatment at 4 and 5% showed tolerance indices by 64.84 and 55.51% in seedlings of mung bean. Coriander extract treatment at all concentrations showed better tolerance in seedlings of mung bean as compared to red chilli extract at similar concentrations.

Discussion

The studies on interactions and competition for resources among plants was carried out and suggested for the use in modifying the pattern of crop cultivation and for the increase in yields [MAJEED & al. 2017]. The treatment of red chili and coriander aqueous powder extract influenced on seedling growth performances of cowpea and mung bean. The agrochemical groups are naturally occurred in plant [KUTI & al. 1990] and produced favorable and toxic impact on the growth of surrounding plants. It was found that the release of chemical compounds from both home spices in the given substrate affected growth performance of both beans. The different response in seedling growth parameters of bean seems attributable to the level of red chili and coriander powder extract treatments. Allelopathic compounds from plants residues called allelochemicals and may work as inhibitor or beneficial for growth of subsequent plants [RICE, 1984]. The maximum inhibitory allelopathic effect of bindweed (*Convolvulus arvensis* L.) vegetative part at 10% on seed vigor index for millet and basil plants was observed [FATEH & al. 2012]. The inhibitory substances from *C. annuum* and *C. sativum* released in the soil which apparently showed allelopathic potential and might be cause for significant decline in growth characteristics of cowpea and agreed with the findings of ELLS & MCSAY (1991) on cucumber seedlings by alfalfa plant residues. Capsaicin have a powerful allelopathic effect on growth of plant [CHO & al. 1992] and growth of weed [GONZALEZ & al. 1997]. The treatment of both spices at 2% level further decreased root and shoot growth of cowpea. MOOSAVI & al. (2011) also found significantly decreased in shoot and root growth of *Vigna radiata* L. with aqueous extract of leaf, stem and root of sorghum. The treatment of coriander powder extract showed beneficial and harmful effects on the seedling characteristics of cowpea. The low concentration of coriander powder at 1% slightly increased and a higher concentration decreased the seedling dry weight of cowpea. The presence of phenols and tannins from *Jatropha curcas* (5-20%) as allelochemicals showed inhibitory effect on green chilli and stimulatory on sesame [REJILA & VIJAYAKUMAR, 2011].

Conclusions

It was concluded that aqueous powder extract of red chili and coriander at 5% influenced on seedling growth and tolerance index of cowpea and mung bean. The availability of toxic allelochemicals compounds from both spices in substrate showed strong allelopathic potential activity for seedling of cowpea and mung bean.

Notes on contributors

Prof. Dr. Muhammad Zafar IQBAL, PhD, is ex-chairman department of Botany, University of Karahi, and has special interest in plant ecology and pollution, climatology, plant and environment, automobile pollution, industrial pollution and ecology and has published more than 170 scientific research papers in national and international scientific peer reviewed renowned scientific journals.

Lubna AHMED is MS student in Botany.

Dr. Muhammad SHAFIQ, PhD, is a research scholar and have main interest in plant ecology and environmental pollution, phytosociology. He has published more than 110 scientific research papers in national and international scientific peer reviewed renowned scientific journals. He has also published books on "Impact of Automobile Pollutants on Plants" and "Poison Land. Vegetation of disturbed and polluted areas in Pakistan". He has also published few book chapters.

Acknowledgements

The authors sincerely acknowledged the experimental facilities provided by the Chairman, Department of Botany, University of Karachi.

References

- ABBASSI F., GHORBANI R. & KHORRAMDEL S. 2013. Allelopathy research in Iran: experiences, challenges, and prospects: 159-192. In: CHEEMA Z., FAROOQ M. & WAHID A. (eds.). Allelopathy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30595-5_8
- ALLOLI T. B. & NARAYANREDDY P. 2000. Allelopathic effects of Eucalyptus plant extracts on germination and seedling growth of cucumber. *Karnataka Journal of Agricultural Sciences.* **13**(4): 947-951.
- BAGHERI A., REZAEI M. & EIVAZI A. R. 2013. Allelopathic properties of *Chenopodium album* on seedling related traits of sorghum cultivars. *International Journal of Agronomy and Plant Production*. 4(S): 3743-3747.
- BOJOVIĆ B. M. & JAKOVLJEVIĆ D. Z. 2015. Allelopathic relations of selected cereal and vegetable species during seed germination and seedling growth. *Kragujevac Journal of Sciences.* 37: 135-142. https://doi.org/10.5937.//KGJSC11537135B

ALLELOPATHIC POTENTIAL OF CAPSICUM ANNUUM L. AND CORIANDRUM SATIVUM L. ON...

- CHEEMA Z. A., FAROOQ M. & KHALIQ A. 2013. Application of allelopathy in crop production: success story from Pakistan: 113-143. In: CHEEMA Z., FAROOQ M. & WAHID A. (eds.) Allelopathy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30595-5_6
- CHO K. J., PARK K. S. & TANG C. S. 1992. Allelopathic potential of red-pepper (*Capsicum annuum* L.) fruit. Research Report to Rural Development Administration. **34**: 18-23.
- CHOU C. H. & LEE Y. F. 1991. Allelopathic dominance of *Miscanthus transmorrisonensis* in an alpine grassland community in Taiwan *Journal of Chemical Ecology*. **17**(11): 2267-2281. https://doi.org/10.1007/ BF00988007
- DAIZY R., BATISH H. P. & SINGH S. K. 2001. Crop allelopathy and its role in ecological agriculture. Journal of Crop Production. 4(2): 121-161.
- DONGRE P. N. & YADAV B. 2005. Inhibitory allelopathic effect of weed leaf leachates on seed germination of pea (*Pisum sativum* L.). Crop Research Hisar. 29: 458-461.
- ELLS J. E. & MCSAY A. E. 1991. Allelopathic effects of alfalfa plant residues on emergence and growth of cucumber seedlings. *Horticultural Science*. 26(4): 368-370.
- FATEH E., SOHRABI S. S. & GERAMI F. 2012. Evaluation the allelopathic effect of bindweed (*Convolvulus arvensis* L.) on germination and seedling growth of millet and basil. *Advances in Environmental Biology*. 6(3): 940-950.
- FERGUSON J. J. & RATHINASABPATHI B. 2003. *Allelopathy: How plants suppress other plants*. Horticultural Sciences Department, Florida Cooperative Extension Service. pp. 1-5. http://edis.ifas.ufl.edu.
- GONZALEZ L., SOUTO X. C. & REIGOSA M. J. 1997. Weed control by *Capsicum annuum*. Allelophaty Journal. 4: 101-110.
- HEGAZY A. K. L., MANSOUR K. S. & ABDEL-HADY N. F. 1990. Allelopathic and autotoxic effects of Anastatica hierochuntica. Journal of Chemical Ecology. 16(7): 2183-2193.
- KIL B. S. & YUN K. W. 1992. Allelopathic effects of water extracts of *Artemisia princeps* var. *orientalis* on selected plant species. *Journal of Chemical Ecology*. **18**(1): 39-51.
- KUTI J. O., JARVIS B. B., MOKHTARI-REJALI N. & BEAN G. A. 1990. Allelochemical regulation of reproduction and seed germination of two Brazilian Baccharis species by phytotoxic trichothecenes. *Journal of Chemical Ecology*. 16 (12): 3441-3453.
- MAJEED A., MUHAMMAD Z., HUSSAIN M. & AHMAD H. 2017. In vitro, allelopathic effect of aqueous extracts of sugarcane on germination parameters of wheat. *Acta Agriculturae Slovenica*. **109**(2): 349-356.
- MELKANIA N. P. 1984. Influence of leaf leachets of certain woody spp. on agriculture crops. *Indian Journal of Ecology*. 11: 82-86.
- MISHRA A. 2014. Phytotoxic effect of *Lantana camara* leaf extract on germination and growth of *Pisum sativum*. Indian Journal of Plant Research. **4**(5): 55-56.
- MOOSAVI A., TAVAKKOL R., AFSHARI A., ASADI A. & GHARINEH M. S. 2011. Allelopathic effects of aqueous extract of leaf stem and root of sorghum bicolor on seed germination and seedling growth of Vigna radiata L. Notulae Scientia Biologicae. 3(2): 114-118.
- OUSSAMA O. 2003. Allelopathy in two durum wheat (*Triticum durum* L.) varieties. Agriculture Ecosystems & Environment. 96: 161-163.
- PURI S. & KHARA A. 1991. Allelopathic effects of Eucalyptus tereticornis on Phaseolus vulgaris seedlings. The International Tree Crops Journal. 6(4): 287-293.
- REHMAN S. A. & IQBAL M. Z. 2009. Growth of *Leucaena leucocephala* (Lam.) De-wit in different soil compositions of Korangi and Landhi industrial areas of Karachi, Pakistan. *Pakistan Journal of Botany*. 41: 3125-3138.
- REINHARDT C. F., MEISSNER R. & NEL P. C. 1993. Allelopathic effect of sweet potato (*Ipomoea batatas*) cultivars on certain weed and vegetable species. *South African Journal of Plant and Soil*. **10**(1): 41-44.
- REJILA S. & VIJAYAKUMAR N. 2011. Allelopathic effect of *Jatropha curcas* on selected intercropping plants (Green Chilli and Sesame). *Journal of Phytopharmacology*. **3**(5): 1-3.

RICE E. L. 1984. Allelopathy. 2nd ed., Academic Press, New York: 421 pp.

ZACKRISSON O. & NILSSON M. C. 1992. Allelopathic effects by *Empetrum hermaphroditum* on seed germination of two boreal tree species. *Canadian Journal of Forest Research.* **22**(9): 1310-1319.

How to cite this article:

IQBAL M. Z., AHMED L. & SHAFIQ M. 2020. Allelopathic potential of *Capsicum annuum L.* and *Coriandrum sativum L.* on growth of bean crop. J. Plant Develop. 27: 63-70. https://doi.org/10.33628/jpd. 2020.27.1.63